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ABSTRACT

This thesis considers the problem of synthesizing cyclic (or
periodic) sequences, with binary and no'nbinary (N-ary) symbols, for
special coommnication applications. For the applications considered,
the sequences are transmitted over channels with additive white Gaussian
noise. For correlation detection the autocorrelation function of a se-
quence or the cross-correlation function between sequences are required
for the evaluation of performance.

The first part of the thesis is concerned with the derivation
of new classes of sequences. Some new theoretical developments are
presented on the cyclic correlation properties of sequences containing
the NB complex roots of unity as symbols. These sequences are related
to real sequences contaiaing phase modulated sinusoids as symbols.

A class of sequences derived by the interleaving of two level
binary sequences is presented. These interleaved sequences are shown
to exhibit autocorrelation and cross-correlation functions with inter-
mediate peaks. The locations of the peaks can be controlled to synthe-
size autocorrelation functions which are "almost' two level or autocor-
relation functions with peaks of different magnitudes. The application
of these sequen.ces to synchronization is considered.

Classes of N-ary sequences (called cyclically orthogonal se-
quences), which exhibit cross-correlation functions which are zero for
all cyclic shifts are derived.

The second part of the thesis is concerned with the application
of the sequences derived in the first part, as well as other known

classes of sequences, to two special communication problems.
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The first application is a binary asynchronous linear multiplex
system. There are k transmiiter-receiver pairs, each using sequences
(which are sumed linearly) as carriers for binary information. Although
a particular transmitter is synchronized with the corresponding receiver,
the other transmitter-receiver pairs are asynchronous with this pair.

The average probability of error with additive white Gaussian noise 1s
evaluated when the carriers are the binary cyclically orthogonal se-
quences. The performance is also determined when the carriers are sinus-
olds of different periods,random binary sequences, and sequences asso-
clated with Bose-Chaudhuri Codes.

The second application is an N-ary synchronous "hard-limiting"
multiplex system. For this application there are also k transmitter-
receiver pairs, although the respective carrier sequences are not sumed
linearly, but "hard-limited" prior to transmission. It is shown that
the optimm set of carriers are the cyclically orthogonal sequences.

The system performance is determined for these seqQuences. This system
might be useful for satellite repeaters which usually employ "hard-

limiters."
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CORRELATICN PROPERTIES OF MULTI-LEVEL CYCLIC SEQUENCES

1. INTRODUCTION

Cyclic or periodic sequences are gaining increasing importance
in such commnications applications as synchronization, tracking and
ranging, multiplex carrier systems, and signalling over a continuous

1 This thesis is concerned with the derivation of some new

channel,
classes of sequences, and the application of these sequences to two
important multiplex problems.

An N-ary sequence S, of length L, is defined as an L-dimensional
vector, S = (8p,8;, ++s, 8-1), Wwith symbols as, 1 = 0,1, ..., L-1, taken
from a finite alphabet, usually the ring of integers modulo N, where N
is any integer greater than 1. For practical applications the symbols
are mapped onto quantities ag_m) , for which the ordinary addition and
multiplication operations are defined. A waveform or carrier, f(t) of

time duration Lt,, is then associated with the mapped sequence, of the

form
™ 0<t<t,
nim} t, St<2y
2t) =7,

;ﬁ’fi (I-1)%, <t < Lt,

If f(t+nLty) =0, for 0 <t < Lt,, n = +1,#2, ..., then the original se-
quence is referred to as an aperiodic sequence. If P£(t+Lt;) = f£(t), for
all t, then S is referred to as a periodic or cyclic sequence. Only

cyclic sequences are considered in the thesis.



Generally the terms sequence, mapped sequence and carriers have
been used interchangeably in the literature. This custom will be con-
tinued in this thesis when there 1s no possibility of ambiguity, as is
the case with binary sequences. However, when several types of mappings

are possible the correct term will be used.

1.1 Review of Pertinent Prior Vork

Several types of periodic sequences have been studied previously,
with the research divided into four phases: (a) theoretical derivation
of classes of sequences exhibiting particular autocorrelation and cross-
correlation functions, (b) proofs on the nonexistence of classe: of se-
quences exhibiting certain correlation properties, (c) methods of
generating particular sequences, and (d) applications of sequences to
special communication problems. A sampling of prior work in each of

these areas i1s now briefly described.

a. Theoretical Derivation of Classes of Sequences

Considerable effort has been devoted to the derivation of
sequences exhibiting autocorrelation functions which are two-level, i.e.
the autocorrelation function is constant (usually -1/L) for all nonzero
integral shifts. The best known of the two-level sequences, the maximal
length sequences witi binary or nunbinary components, have been studied

3

by Singer,2 Zierler,” and Golamb.h Other two-level Linary sequences

which have been synthesized are the quadratic residue seq_uence,5 twin

prime seq_uence,6 and Hall sequence.7



Perfect N-ary sequences with elements mapped onto the roots of
unity (the autocorrelation function is zero for all nonzero shifts) have
been studied by Heimiller® and Franck, et al.? Perfect ternary sequences
with elements mapped onto +1, -1, O have been found by Tompkinslo by a
camputer search. Titsworthll has derived a class of two-level sequences
with the elements contained in the field of irrational numbers.
Titsworth!? has also derived & class of "almost" two-level binary se-
quences for some lengths not covered by the known two-level sequences.

Extensive searches have been conducted for classes of sequences
which exhibit low cross-correlation. Classes of orthogonal binary se-
quences have been derived from the theory of Hadamard matrices.l The
theory is presently being extended to roots of unity seq_uences.l3 For
nonorthogonal s. “iences, bounds on the number of sequences with cross-
correlation bounded bty an arbitrary limit has been derived.lh Bounds on

the number of sequences, with the cyclic cross-correlation function,

bounded by certain limits have been derived by Gilbert.l?

b. Nonexistence Proofs

".‘urynl6 has presented proofs on the nonexistence of perfect
binary sequences beyond length 4. In addition, he has shownl® that two-

level N-ary sequences do not exist for many lengths.

c. Generation of Binary Sequences

The generation of many classes of binary sequences by linear

1,17,18

feedback shift registers has been considered. Some classes of se-

quences can be generated by the filteringlg of maximal length sequences.



d. Applications of Sequences

An important application of sequence theory has been the
use of the orthogonal binary sequences as a signalling alphabet for the
continuous Gaussian Cha.nnel.20 The theory has been extended to N-ary
sequences.21 S"ciffler22 has considered the use of sequences for the
synchronization of error-correcting codes. Binary sequences have been

considered as carriers for binary multiplex sys‘t:ern:&a.z3

1.2 Brief Review of New Develomments Presented in the Thesis

In Chapter 2 the background for the succeeding chapters is pre-
sented. In addition, several propcrtics of nonbinary
sequences are discussed. A theorem on the shift and add property of
nonbinary maximal length sequences is derived, from which the autocorre-
lation function of ternary (+1, -1, 0) maximal length sequences is
derived. A method of signalling with Nth roots of unity sequences as
carriers is outlined. Information is transmitted by sending a sequence
or one of its N-1 complements.

In Chapter 3 a class of binary sequences with useful autocorre-
lation and cross-correlation properties is presented. These sequences
are derived by the interleaving of two-level sequences, or two-level and
complement two-level sequences. It is shown that if n two-level sequences

are interleaved, the autocorrelation function of the resultant sequence

L -n+1
nL *

amplitude are obtained if scveral peaks occur at the same location.

has n(n-1) minor peaks of height

Fewer peaks of larger

Using this interleaving procedure, autocorrelation functions with (n-1)



peaks of different amplitude, and "almost" two-level autocorrelation
functions are synthesized. Classes of sequences exhibiting low velues
of cross-correlation at all cyclic shifts are synthesized by interleav-
ing. Autocorrelation and cross-correlation functions with positive and
negative peaks are synthesized by interleaving the camplement two-level
sequence along with the uncomplemented sequence. Interleaved mavimal
length sequences can be generated by the nonlinear flltering of a o le
maximal length sequence. A number of examples illustrating this tech-
nique are presented. The application of the interleaved sequences for
synchronization is considered.

In Chapter 4 methods are presented for the synthesis of N-ary
sequences (called cyclically orthogonal scquences), which are orthogonal
for all cyclic shifts. All of the binary sequences, derived by the tech-
niques presented in this chapter are of different least period. It 1is
conjectured that cyclically orthogonal binary sequences of the same least
period do not exist.

In Chapter 5 the application of cyclically orthogonal sequences
as carriers for an asynchronous linear multiplex system is considered.
In this system there are k users on a channel, with each transmitter-
receiver pair using a different sequence as a carrier. Although a par-
ticular transmitter is synchronized with its corresponding receiver, all
of the other transmitter-receiver pairs can be asynchronous with this
particular pair. The respective carriers are summed linearly on the
channel. The density function of the interference is determined and the

average probability of error is evaluated when the received signals are



corrupted by additive white Gaussian pnoise. Saveral other classes of
functions are considered as carriers for this system.

A diirerent type of multiplex system is considered in Chapter 6.
In this system there are k users on the channel, all transmitting synchro-
nously with N-ary sequences as carriers. Information is transmitted by
sending a sequence or one of its N-1 complements. However, the carriers
are summed and then passed through a hard-limiter prior to transmission.
The set of cyclically orthogonal sequences are shown to minimize the

average probability of error.



2. FPRELIMINARY DERIVATIONS

In this chapter some basic definitions, mappings, and theorems,
which will be reqaired in the succeeding chapters, are established.
Several types of sequences are described and the autocorrelation and
cross-correlation functions of the mappings of these sequences are de-
fined. The complements of sequences are defined and the application to
sigralling 1s noted. A theorem concerning the shift and add property of
the maximal length sequence is derived, and is then used to derive the
autocorrelation function of a mapped ternary (+l1, -1, 0) maximal length

sequence.

2.1 Basic Definitions and Mappings

An N-ary cyclic sequence, Sg, of length L, is defined in this

thesis as a vector, Sy = (ay,8,, ..., 8].1), Wwhere ay, 1 =0, ..., L-1,
can assune the values 0,1, ..., N-1. 8Sg can also be represented as a

polynamial Sg(x),
Sp(x) =agta;x +ax®+ ...+ aL_le'l (2.1)

where x 1s an indeterminate and xL = 1, mod L. For practical applica-
tions the symbols of S, are mapped onto quantities for which the usual
addition and multiplication operations are defined. Three useful map-

pings are described below.

a. Binary Mapping

For N =2 the mapping of the ajy's is 0 = +1, 1 = -1.



b. N Camplex Roots of Unity Mapping’

The N possible values of aj are mapped onto the Nth camplex
roots of unity, 0 ~ e30, 1 = &3(2%N) | (yqy o d(NV2n/n g
determination of correlation functions this mapping will be shown to be
equivalent to the mapping O = cos wt, 1 =~ cos(wt + 2a/N), ..., (N-1) =

cosfat + (N-1)2a/1].

c. Mapping Onto Positive and Negative Integers

As a generalization of the binary mapping the N values of
ai can be mapped onto positive and negative integers. For N odd 0 -~ O,
l =4 l’ cvey (N-l)/z = (I"‘l)/e, (N+l)/2 = -(N-l)/a, IR NN} (N-l) - "'lo The

only result obtained for this mapping is for N = 3.

The normalized cross-correlation, pah(2), between two mapped

sequences, (Sp) (m) and ( Sb)(m) delayed by )\ digits, where

(Sa)(m) = (a(m) (m)

0 ) ey aL-l )

()™ = @, .., b{®)y
bgm)

and

o

are the mappings of ay and bj, is defined as s+

*For N = 2 the NtB camplex roots of unity mapping and the binary mapping
ere identical.

e general time cross-correlation pgn(t), of two functions Sa(t) and
Sp(t) of period T is defined as

T
Pap(t) = —%— j Sa(t)Sg(t-'r) dt
o

For sequences the integral reduces to a summation.



pap(N) = ) a{™ (o{™)* (2.2)

(m), »

(m) are taken mod L, ard (by.3) indicates the

where the subscripts of b
camplex conjugate of b/,mi IT a = b, then (2.2) reduczs to the autocor-
relation functizn of S,.

For the tinary and roots of unity mappings, th2 cress-correlation
can be deterair=C irom the po'.momizl). rev.isente..ions otf Sg and Sp. For
the binary case form a polyncnial S,(x) = S,(x) ) x)‘Sh(x) mod (xL-l)

(where{(#) indicates modulo 2 sum). Then p,y(}) is seen to be:
Pap(M) = —%— [No. of 0's in So(x) - No. of 1's in Sc(x)-l (2.3)

If Sg and Sp are N-ary sequences mapped onto the complex roots
of unity, then form the polynami..l Sq(x) = Sa(x) - x)‘Sb(x) , mod (xL-i) A
(where the symbol subtraction is mod N). Then pgp()) is seen to be
N-1
paplMN) = % Z [No. of d's in Sc(x)] e‘j(aﬂd/m (2.4)
d=0
It can be shown that the mapping onto the phase modulated cosine
functions 1s related to the mcpping onto the camplex roots of unity.

The cross-corrclation function, pab( A\), for the roots of unity

mapping is
L-1

7 ool
i=0

2x (81'b1-x)]
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Under the mapping onto the phase modulated cosine functions the cross-

correlation function becomes

L-1 (i+l1)ty S
- R N
Pap( M Tts y J' cos | wt el cos | wt o dt

——

i=0 it

"

L T 2
T z cos [ 1\;‘ (ai'bi-)\)]
i=0

L-1
1 2n 2n
+ : Z {sin [(1+1)a)tl + T ai+1] * cos [( 1+l)wt, + - bi-)\+1]
i=0

sin [icutl + 2;‘ a1] * cos [iwtl + —2;‘— bi-)\] }

where t3 1s the duration of one time slot. The second summation can be
dropped if wty >> O, and thus the correlation function under the cos.ine
function mapping is proportional to the real part of the correlation

function for the roots of unity mapping.*

*#The analysis for the phase modulated cosine functions assumes that the
phases of the carriers of the two functions which are cross-correlated
are identical. However, if the phases are random, then the typical
correlation term becomes

1 2n
5 cos [tp-i- g (ai'bi-)\)]

where ¢ 1s uniformly distributed between O and 2x. For the applications
which will be considered, it will be assumed that ¢ 1s zero.
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It can be shown that all correlation functions of mapped se-
quences (real and complex) are linear between integral cyclic shifts,
indicating that the determination of the correlation function at in-
tegral cyclic shifts completely specifies the correlation function.*

A technique for binary signalling with binary sequences,
(called coherent phase shift keying, PSK) is to transmit the mapping
of a sequence or its complement (negative). If roots of unity (or
phase modulated cosine) mapped sequences are used as carriers, then
a generalization of the PSK case can be specified by defining comple-

h

ments of N-ary sequences. Tre rt complement sequence, qu‘r) of Sa

is defined as:
qur) = (2o-r, 8;-T, ..., 8p.3-r) mod N (2.5)

In polynomial representation the complement polynamial, s(‘lr) (x), is
seen to be:

{9 (4) - s,(x) - x(x) (2.6)

where r(x) =r + rx + ... + -2,

The cross-correlation function Paar( 0) between a mapped root

th complement is Paar(0) = e"j(am'/ N) .

From a recent report by Reed and Scholtz ,21 integral cxpressions for the

of unity sequence and its r

average probability of error for N*R roots of unity complement signal-

ling can be derived.

#The proof for binary sequences is a special case of Theorem 5.1.
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The complement sequence ccncept will be used in Chapter 4 for
the synthesis of classes of N-ary scquences which are orthogonal for
all cyclic shifts. The complement signalling concept w:ll be discussed
further in Chapter 6 when the N-ary "hard" limiting multipler system is
analyzed.

In the fcllowing section some new results are presented on the
characteristics cf maximal length p-nary (N = p where p is a prime number)

sequences.

2.2 Maximal length p-nary Sequences

The best known of th2 p-nary sequences is the maximal length
pP-nary sequence. Petersonah has shown that the polynomial representation
h.m(x) of a maximal length sequence can be derived from a primitive irre-
ducible polynamial, gp(x) , over GF(p). If gp(x) is of degree r, then the

coefficients of hy(x), which is of degree p' -l-r

r—
hy(x) = X2 =1 (2.7)

specify the first pr-r digits of the maximal length sequences of length
L= pr-l, the last r-1 digits being zero. The sequence corresponding to
hp(x) can be generated by an r stage p level shift register with feedback

connections prescribed by gp( x). It has been showneh

that in a maximal
length sequence, the field elerents, 1 through p-l, appear exactly p* "1
times and the field element O appears exactly pr-l-l times, It has also
been establishedeh that the pr-l r-tuples formed by teking r successive

digits of a maximal length sequence, a,,8), «¢v) 8B_15 8,83, -vsy 815
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ceed apr_l,al, 390 1 ar--a; are tne (pr--l) distinc*t nonzaro r-ivples over
GF(p) .

It is well knc'-mhthe.z maxiuil leagth tinary (I = p = 2) se-
quences exhibit the shift and modulo 2 add (or equivaiently the shift
and modulo 2 subtract) property. That is, if a maximal length binary
sequence is delayed an integral number of digits and the delayed se-
quence is added (modulo 2) tn the original sequence, the resultant se-
quence will itself be a delayed version of the original sequence.

The shift and add property may be written as:

s T(A)

s ( ) A = 1, sy L-l
hm(x)@x%(x) = z ' nod(xL-1) (2.8)

0(x) A=0

It can be shown that I(\) is unique for given A, and for
A7 Ay mod L, I(ny) # I(XJ) mod L. These properties of I(A) will be
used in Chapter 5 when the notlinear filtering of maximal length se-

quences is discussed.

26

25 using &« set of tables computed by Elspa~  de-

Wolf et al

scribed a method for determining I(A) as a function of the primitive

polynamial gp(x) , over GF(2).
The following theorem describes the shift and modulo p add

propexrty of p-nary maximal lergth sequences (p > 2),

THEOREM 2.1 If a p-nary maximal length sequence (p > 2) of length
L= pr -1 is delayed an integral number of digits, and the
delayed sequence is scded (mod p) to the original sequence,
the resulting sequence will itself be a delayed version of
the original sequencz, except for e shift of (p*-1)/2 = L/2
digits, in which case the resulting sequence is the all zero
sequence.



1k

2k has shown that the pr-l nonzero terms in the ideal

generated by hm{x) in the algzzhra of polynomials modul:> xL-l correspond

Proof: Peterson

to the pF-1 cyclic shifts of tie maximal length sequence. Since the
ideal is an additive subgroup, the addition (mod p) of hy(x) and a shifted
version of hyp(x) yields a unique shifted version of hy{x) except for the

sumation

hy(x) + (p-1)hy(x)

which will yield the polynamial O(x) corresponding to the all zero
sequence.

It will now be shown that the polynamial (p-1)hm(x) is congru-
ent to x/ 2hm(x) modulo (xU-1); the latter polynomial corresponding to

a cyclic shift of L/2 digits. We kmow:
ep(x)hy(x) = 0 mod(x"-1) (2.9)
Thus in order to show that
(p-Dhg(x) = x/2hy(x)  moa x5-1) (2.10)
it is sufficient to demonstrate that
(«2/2-p1) = (/242) = 0 mod gp(x) (2.11)
However, for (2.11) to be true, it is nncessary to show that
gp(x) | (x1/241) (2.12)

We know that gp(x) divides (xl’-l) , for no value of £ .ess than

p*-1 = L since gp(x) is primitive. Thus
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ep(X)I(xL/2+l)(xL/2-l) (2.13)

Since gp(:c) cannot divide xL/ 2.1 ;

gp(X)l(xL/2+l)
establishing the theorem.

The following corollary to Theorem 2.1 perteins to the shift
and subtract of p-nary maximal length sequences.
COROLLARY 2.1 If a p-nary maximal length seqQuence is delayed an
integral number of digits and the delayed sequence is subtracted
(mod p) from the original sequence, the resultant sequence will
itself be a delayed version of the original maximal length se-
quence for all nonzero shifts.
Proof: Since the subtraction Irom hy(x) of any term in the ideal gen-
erated by hm(x), yields a unique nonzevo term, except for the operation

hy(x) - hy(x), the shift and subtract property is evident.

From Theorem 2.1, Corollary 2.1, and the properties of maximal
length sequences, the autocorrelation functions of these sequences,
transformed by two mappings, are now presented.

THEOREM 2.2 The autocorrelation function, pa(A), of a ternary (p = 3)

maximal length seqQuence transformed by the mapping O - O,
l-1,2 -~ -1 is:

(2:3771) /(37-1) 0
=3 -(2:372) /( 1/2 (2.14)

A
5 31‘ 1 51'_1) A
A
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The proof of Theorem 2.2 is presented in Appendix A. A plot of pa(A) as

given by Theorem 2.2 is shown in Figure 2.1.

The autocorrelation function of a maximal length p-nary se-
quence (all p) transformed by the roots of unity mapping is

1 A=0 '
pa( M) =g (2.15)
-1/L A fO

The result is derived using Corollary 2.1 and Equation (2.4).
A plot of the autocorrelation is shown in Figure 2.2. This type of
autocorrelation function is known as a two-leve wocorrelation func-

tion aiid the maximal length sequence is lmown as a two-level sequence.

Two-level binary sequences, besides the maximal length se-
quence, have been derived for the following values of L.

a. L = L4 (Perfect Sequen;:e)

b. L =in-11s prime n = 1,2, ... (Quadratic Residue Sequenc:e)5

c. L = p(p+2) where p and p+2 are prime (Twin Prime Sequence)6

d. L = n®+27 is prime (Hall Sequence)7

The out-of-phase autocorrelation of the first sequence is O,
and it is the only known binary sequence to exhibit this property. The
out-of-phase autocorrelation function of the remaining sequences is
-1/L. The two-level binary sequences with out-of-phese 'autocorrelation
equal to -1/L will be used in Chapter 3 to derive, by interleaving,
larger classes of binary sequences with various autocorrelation and

cross-correlation properties.
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Two-level perfect N-ary sequences, mapped onto the roots of
unity, are known8’9 for L = Nz. However, except for the maximal length
sequences, the genersl theory of two-level sequences Las not been satis-
factorily generalized to N-ary sequences. For N = 3 a two-level vroot of
unity mapped sequence (01221) has been found by the author and it has
been :I.ndica.t'.ed27 that no two-level ternary roots of unity mapped se-

quences exist for lengths other than 5, 8, 9 up to 25.
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3. SEQUENCES DERIVED BY THE INTERLEAVING OF TWO-LEVEL BINARY* SEQUENCES

3.1 Introduction

In Chapters 1 and 2 the prior research in the derivation of two-
level binary sequences was sumnarized. Titsworthle has derived limited
classes of "almost" two-level sequences (the autocorrelation function is
close to zero for nonzero shifts), by forming ecither
the tensor or term-by-term products of the known two-level sequences.
From the theory of cyclic codes, in particular, Bose-Chaudhuri Cod.e.'s.;?8
bounds on the autocorrelation functions of some additional sequences can
be found. Emphasis has been placed on the derivation of two-level se-
quences because they provide simple and accurate methods for tracking,
ranging and synchronization.l

With the major emphasis placed on the derivation of two-level
and "almost' two-level sequences, the general problem of synthesizing
sequences exhibiting arbitrary realizable autocorrelation functions has
remained unsolved. .

In this chapter a large class of previously unknown sequences
are synthesized by the arbitrary n-fold interleaving** of the same two-
level sequence. It will be shown that the autocorrelation function of

the interleaved sequence is similar to that of the original sequence

% The discussion to follow is limited to the interleaving of binary se-
quences since many more binary two-level seqQuences are known than
general N-ary two-level sequences. However, the theory presented is
applicable to the interleaving of N-ary sequences.

##The interleaving method has be:n used previously?9d to derive error-
correcting codes with multiple burst error correction capability.



20

except tf'or the addition of n(n-l) intermediate minor peaks of height
(L-n+1)/nL. A number of these peaks can occur at the same location to
produce fewer peaks of larger amplitude. A formula for calculating the
location of the minor peaks is derived. Using the interleaving tech-
nique, a new set of "almost" two-level sequences are synthesized. Also
autocorrelation functions with (n-1) peaks of different amplitudes are
presented. The cross-correlation function between pairs of sequences,
with these autocorrelation properties, is considered. The theory is
extended to sequences formed by the interleaving of two-level and com-
Plement two-level sequznces.

An n fold interleaved sequence can be generated by the gating
of sequences fram n separate shift registers. However, it is shown that
a class of sequences formed by the interleaving of maximal length se-
quences cen be generated by a relatively simple nonlinear filtering
technique. Several examples of sequences derived by nonlinear filtering
are presented.

The application of interleaved sequences for synchronization is

discussed.

%.2 Derivation of Peak Locations

It was shown in Chapter 2 that the cross-correlation function
of two transformed binary sequences or the autocorrelation function of
a transformed binary sequence could bé determined from the polynomial
representations of the sequences. Throughout the remainder of this

chapter h(x) and x®h(x) will be the polynomial representations of a
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two-level binary sequence, with out-of-phase autocorrelation of -1/L,
and a two-level binary sequence delayed by a digits, respectively.
h(x) (1@ x%], mod

xL-l, has L zeros if ¢ = 0, or (L-1)/2 zeros and (1+1)/2 ones if a £ 0.

1]

Hence, the polynomial h'(x), h'(x) = h(x)(® x%(x)

Two definitions concerned with general interleaved sequences

ar® now presented.

Definition: If the polynomial S,(x) corresponds to the sequence

(Bgs -+ey 87-;) then the polynomial x"®*Vs,(x"), where n 1s a positive
integer, =0, 1, ..., L-1, v = 0,1, ..., n-1, corresponds to the
sequence

(0,0, te0y O,QL_a, O,o, vy O,EL_wl, 00y

v . n-1l

0’0, ...’ o,aL-a—l, o,o, ..., O)

n-1l n-l-v
Polynomials must now be taken mod (an-l).

Definition: The sequence S; resulting from the (2-fold) interleaving of

sequence Sg, and sequence Sp delayed by « digits is:

Sc = (8o,b-qs83,b1-qs +«+» 8L-1,bL-1-0) -
The polynomial S,.(x) can then be written as

So(x) = Sg(x®) + xawlsb(xa) mod (x2P-1).

The synthesis procedure presented is to interleave a two-level

sequence with (n-1) shifted versions of the same two-level sequence.
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The resultant sequence, (in polynoasial representation), denoted as Sp(x)

is:

n-1
sp(x) = 0 ) MY, moa (x"-1) (3.1)
=0 '
vhere the ay's, called the interleaving constants, can assume the values*
0,1, ..., L-1, and ag = O.

The procedure for deriving the autocorrelation function pp(nétw),
of the transformed binary sequence corresponding to Sy(x), for an arbi-
trary integral delay (né+w), 6 = 0,1, ..., L-1, v = 0,1, ..., n-1 1is:

a. Form the polynomial Sp(x) = 5p(x) @xn&wsr(x) , mod (an-l)

b. Apply Equaticn (2.3) to Sy(x) [count the number cf 0's and
1's in Sp(x)] replacing 1/L by 1/nL.

It is seen that®

n-1
B (%) = n(£M) Z Plotd)v e (1) (3.2)
v=0

Thus the polynomiel Sp(x) is:

n-1l
sp(x) = 0(x) Y <PV [1@ @ Smwervavtien) ] pog (1) (3.)
v=0
where
{ 1l v<w
v = ( 5

vZ2w

and subscripts are taken mod n.

*For the most general type of interleaved sequence o # O. Hewever, as-
suming &, = O does not reduce the generality of the autocorrelation
functions.
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The exponents of the terms xn( b+an-wtv-Cy+iarv) determine the
value of the autocorrelation function for a particular delay (né+w). If
no exponent is equal to zero (for a particular 6§ and w) then the sequence
Sp consists of n interleaved sequences each containing (L-1'/2 zeros and
(1+1) /2 ones providing an autocorrelation value of pp(né+w) = -1/L. How-
ever, if o exponents are equal to zero (for a particular set of & and w)
then Sp consists of o all zero seQuences plus n-o sequences, each con-
tain® 4 (L-1)/2 zeros and (1+1)/2 ones, providing an autocorrelation value
of pp(né+w) = (ocl-n+o)/nL. For this condition the autocorrelation func-
tion 1s said to have a '"o" order minor peak, g = 0,1, ..., n.

From (3.3) it can be seen that an "n" order peak occurs at a
delay of O, (corresponding to unity autocorrelation), and no peaks occur
for delays of n,2n, ..., (L-1l)u.

From (3.3) it is determined that peaks occur for

bw,v = Oy = On_y+y = tyy , mod L (3.4)
where
w =12, ..., n-1
v=0,1 ..., n-1
and
a, =0

In order to ideatify each peak, subscripts have been placed on the para-
meter 6. For a given value of w there are n peaks providing a total of
n(n-1) single order peaks. However, a number of single peaks can occur
at the same point to produce multiple order peaks.

The n(n-l) peak locations cannot be arbitrarily chosen. Since

there are (n-1) independent parsmeters - the interleaving constants
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0,0, «vop Q,_; - only (n-1) peak locations are cou....lable.
It will be useful also to lnow the cross-correlation function

betw=en two interleaved sequences. For two interleaved sequences,

n-1
Sg-l)(x) s h(xn) xnasrl)*"
and v=0
(2) n-1 (2),
s (x) = h(x") ) K™Y o (xEe1) (315)
=0

]
cross-correlation peaks, &, y, occur for:

1) _ (2)

be,v = a£ O Sty - gy » mod L (3.6)

where w,v = 0,1, ..., n-1 and a(l), a(a) are the interleaving constants

of the respective sequences. There are n® single order cross-correlation

peaks (some of which can occur at the same point to yield multiple order peaks).
In the following section a number of constraint equations on the

autocorrelation peak locations are derived and a synthesis technique is

indicated.

3.3 Constraints on Autocorrelation Peak Locations

The following constraint equations are derived from (3.k4).

a. If all of the peak locations for a given value of w are
sumed, mod L, it is noted that:

z: S,y =-w=L-wv,mdlL (3.7)
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b. There is a symmetry relationship which the peak locations
satisfy which ensures that pp(né+w) = pp(-né-w). The re-
sulting constraint equation is:

bw,v= -fn-w,v-w - 1 , mod L (3.8)

c. The peak locations 5w,v: v=2,3 ..., n-1l, can be easily
calculated from the peak locations for w = 1 from the

equation:
v
& ,v = }: 61,b , mod L (3.9)
b=v-wtl

Equations (3.7) and (3.9) can be used to synthesize sequences
with various autocorrelation functions. The procedure used in the ex-
amples to follow is to prescribe values for 61,0,61’1, ceey 51,n-25
utilize (3.7) to calculate 61,n-1, and utilize (3.9) to calculate the
remaining peak iocations. Equation (3.4) 1s then used to determine the
interleaving constants from 6; 0, ..., 81,n-2-

It is interesting to note that although there are 17! possible
combinations of interleaving constants (i.e., LP™' different interleaved
sequences), there are fewer .distinct autocorrelation structures. If the
peak locations for w = 1 are written as a linear array, (6, 4,61 1, ...,
51,n-1): then from (3.9), any cyclic shift of the array or any cyclic
shift of the reciprocal erray (backwards array), will yleld identical
autocorrelation functions although the interleaved sequences will in
general be different. The exact number of distinct autocorrelation
structures is the number of unequivalent n-tuples in the ring of integers

mod L, with the constraint that the sum of the elements of the n-tuple is
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-1l mod L. Two n-tuples are defined as unequivalent if and only if one
n-tuple cannot be derived from the other by a cyclic shift or a cyclic
shift of the reciprocal. The number of such unequivalent n-tuples has
not been determined.

In the following two sections exanples will be presented of
two types of autocorrelation functions which can be derived by inter-
leaving two-level sequences. In the first example the interleaving con-
stants are chosen so that the highest autocorrelation peak is "2" order,
providing an almort two-level autocorrelation function. In the second
example, the interleaving constants are chosen so that all autocorrela-

tion peaks are of different heights.

3.4 "Almost" Two-Level Autocorrelation Function

The synthesis procedure will be to choose 61,0, eeey 83 n-p and
derive the remaining peaks from these values. Let L be a prime¥* and let
n = I#l. Thus the length of the interleaved sequence will be L(I+1).

Chicose the peak locations for w = 1 as:

) o = L-l, 61 1 N o, 61’2 = d, 61,3 = ad} eeey 61,L = (L-l)d ’ mod L
(3.10)

Where d = 1,2, se0y L-l, mOd La
Since L is prime, the numbers 0,4, ..., (L-1)d are all of the
distinet numbers mod L. It is easily verified that the peak locations

given by (3.10) satisfy the constraint (3.7) since

*Most of the two-level binary sequences are of prime length. The quac-
ratic residue and Hall sequences are always of prime length and the
maximal length sequences of length 2Y¥-1 are of prime length if r is a
Mersenne prime.
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L s
z by v = z v+ (L-1) = -1, mod L
v=0 v=0

There are then (L-1) single order peaks and one double order peak for
w=1.

The remaining peak locations are calculated using (3.9). In
applying (3.9) consider the (L+l) peak locations for a given value of
w divided into two groups. The first group contains those values of
84,v, which are not explicit functions of 6; o. The peak locations for

this group will assume the value

v v-1l
b ® ) bpt ) vaEvnd) - e, (3a0)
b=v-wt+l V=V-W mod L .

From the above equation it is noted that all of the peak loca-

tions in the first group are unequal since

v(wd) - Led- (wtl) # v'(wa) - —"2-‘1— (wl) mod L

for v # v', mod L.

The second group of peak locations contains those values of
84,v which are functions of 6, ,. For these values of v a typical peak
location is

by,v = v(wd) - __%Q._ (w#l) + (L-1) , mod L .

The peak locations in this second group 30 are all distinct. However,
a peak location in the first group can be equal to a peak location in

the second group. Hence, the autocorrelation function will contain zero,
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first and second order peaks. The magnitudes of first and second order
peaks are O and +1/L respectively. The autocorrelation function of the
sequence derived by the (I+1) fold interleaving of the length L = 7 max-
imal length sequence, with 4 = 1, is shown in Figure 3.1.

L sequences instead of (I+1l) can be interleaved to provide auto-
correlation functions bounded by double order peaeks by choosing the peak
locations for w =1 as & o = L-1, 6, =d, 6, =24, ..., §;,1-1
= (L-1)d.

Fewer than L sequences can be interleaved to provide sequences
with autocorrelation functions bounded by double order peaks. If a se-
quence of length nL, n < L, is to be synthesized, a synthesis procedure
would be to find a set of n numbers, v,u+d, ..., v+(n-1)d, which sum to -1
mod L. There is always a unique number v for any 4 and n such that this
congruence can be satisfied. These numbers (in order) are then the peak
locations 6; 0,61,15 -++» 81,n-1, and 1t can be shown that the resultant
autocorrelation function is bounded by double order peaks. It has been
found that for certain values of n the autocorrelation function derived
in this manner 1is bounded by single order peaks, although no general
result to this effect was found.

It can be shown that the cross-correlation function, for all
cyclic shifts, between two "almost" two-level interleaved sequences, for
n <L and n prime, is bounded by fourth order peaks. The proof for
n = L has been presented elsewhere;50 the proof for n < L is given below.

Consider an "almost" two-~level interleaved sequence with the

peak locations 6&?% for w = 1 chosen as
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(1) 6(J.) (1) (1) 6(:.) (1)

(1)
61,0 =V [} 1,1 =V + d ) ooy 1,n-1 =9y + (n-l

)d(l)

Similarly a different "almost" two-level sequence will have peak locations

6‘(,?2, for w = 1 chosen as
2 (D), e (@) ) ) @ ()

where a(1), a(®) = 1,2, ..., 1-1 with a(}) # a(2), moa 1, v(*) and v(?) are
determined from (3.7) setting w = 1.

The cross-correlation peak locations, 6,:,,‘,, are given by (3.6)

5‘;,‘,54’-) ‘af:feﬁv'“w G EESE

vhere the a(") 's and a( 2) 's are the interleaving constants of the two

sequences.

From (3.4) it is determined that

o)) o (2 e)a®

and

Q,(,i),.,,v = (n-wtv)v(®) + (n-wV)(n-zw*'v*ﬂ)d(a) , mod L

! 1 At J -
Define a variable &y,v 88 &y,v = sw,v + W, Thus &, v is the cross
correlation peak location for v > w, and the peak location increased by

one for v < v. Thus gy v 18

(1) i . (2)
s‘;,v = W(l) + V_(_\H’la)d - (n_wv)v(a) = (n w*l-v)(nzwq.vq.l)d ,
mod L
In order to determine the maximm multiplicity of peaks, it is

necessary to determine the values of v' # v mod n for which 3':r,v = 8w, v



mod L. The procedure is to set g",’v = g",’v., mod L and solve for the
values of v' mod n which satisfy the congruence. It is apparent that a
quadratic equation in v' results, and if r is prime then only two solu-
tions exist, one of which is evidently v' £ v mod n. Thus any value of
6,,',,,, can occur with maximum multiplicity of twc for a given value of w.
However, if the effect of iy is considered, it is seen that the first
v values of g",’v are reduced by 1 to yield the cross-correlation peak
locations 6,,',,‘,. It is then possible that four values of 6;,\, will be
identical (for a given w), providing a cross-correlation function bound-
ed by fourth order peaks.

The class of sequences just described has "good'" autocorrelation
and cross-correlation properties. Thus these sequences can be used as
a set of code words for a coomunication system with the transmitter
asynchronous with the receiver. The "almost" two-level autocorrelation
property can provide a means for synchronization, and the "good" cross-
correlation property for all cyclic shifts provides a low provability
of deciding on the wrong code word.

As a final remark on these "almost" two-level interleaved se-
quence it should be noted that the class of sequences of length I? forms
a set of good error-correcting codes, if the code consists of all cyclic
shifts of all of the (L-1) interleaved sequences. A total of L2(L-l)
code words are formed with minimum distance,* dpiy = #( L2-5L+1&) . Thus

for large L the code consists of (approximately) 12 code words of length

#The minimmm distance is easily evaluated by relating the mavimum value
of cyclic cross-correlation (equivalent to fourth order peai) to the

Hamming distance.
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L? with an error-correction capability of Lz/h. A Bose-Chaudhuri code ,28
(the best of the known linear codes) containing L® code words of length
L2 provides a guaranteed error-correction capability of only L2/2 log, L.
Thus the code formed from the interleaved sequences provides protection
greater ‘han a Bose-Chaudhuri code of equal length with an equal number of
words.

In the following section a class of sequences with autocorrelation
functions containing intermediate peaks all of different amplitude will be

synthesized.

3.5 Autocorrelation Function with A1l Peaks of Different Amplitude

The synthesis procedure is to choose the peak locations &,y for
w = 1. Choose 61,0 = 83,1 = +v. = 83,n-2 = v, vhere v can assume any
value, mod L, except values for which the congruence vn = L-1, mod L, is
satisfied,* where n is any positive integer. The choice of allowable
values of v provides an "(n-1)" order peak in the autocorrelation function
at (nvtl). There is then a single order peak at (ndy,n-1+l) where
81 ,n-1 = (L-1) - (n-1)v, mod L.

The remaining peak locations are calculated from (3.9). It is

determined that & = veo = 0 = wv, mod L, and 6, .,

=
W,w=1 W,W? w,n-2

¥ 6w,o =loonl & 6w,w-a

order peek of (nwv+w) and a "w" order peak at [n(L-1) - n(n-1)v + w],

(L-1) - (n-w)v, mod L. Hence there is an "(n-w)"

mod L. The autocorrelation function thus contains (n-1) peaks, (exclud-
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